Mathématiques

Question

Bonjour,
Je suis en TS et j'aimerai que quelqu'un m'aide et m'apporte des explications sur ces questions. Merci d'avance!!
Bonjour, Je suis en TS et j'aimerai que quelqu'un m'aide et m'apporte des explications sur ces questions. Merci d'avance!!

1 Réponse

  • Réponse : Bonjour,

    1)

    [tex]\displaystyle \int_{-1}^{1} |x| \; dx=\int_{-1}^{0} -x \; dx+\int_{0}^{1} x \; dx=\left[-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{(-1)^{2}}{2}+\frac{1^{2}}{2}\\=\frac{1}{2}+\frac{1}{2}=1[/tex]

    2)

    [tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{x\cos x-\sin x}{x^{2}} \; dx=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx[/tex]

    On a aussi:

    [tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx=\left[-\frac{1}{x} \times x\right]_{\frac{\pi}{2}}^{\pi}-\int_{\frac{\pi}{2}}^{\pi} -\frac{1}{x} \times \cos x \; dx=-1+\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx\\[/tex]

    Donc:

    [tex]\displaystyle \int_{\frac{\pi}{2}}^{\pi} \frac{x \cos x-\sin x}{x^{2}} \; dx=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x^{2}} \; dx\\=\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx+1-\int_{\frac{\pi}{2}}^{\pi} \frac{\cos x}{x} \; dx=1[/tex]

    3) On a:

    [tex]\displaystyle \int_{0}^{1} \frac{x}{x+2} \; dx=\int_{0}^{1} \frac{x+2-2}{x+2} \; dx=\int_{0}^{1} 1-\frac{2}{x+2} \; dx=\int_{0}^{1} 1 \; dx-\int_{0}^{1} \frac{2}{x+2} \; dx=[x]_{0}^{1}-2 \int_{0}^{1} \frac{1}{x+2} \; dx=1-2[\ln(x+2)]_{0}^{1}=1-2(\ln(1+2)-\ln(0+2))\\=1-2(\ln(3)-\ln(2))=1-2\ln(3)+2\ln(2)[/tex]

    Exercice 2

    1) On a:

    [tex]\displaystyle \frac{a}{x-1}+\frac{b}{2-3x}=\frac{a(2-3x)+b(x-1)}{(x-1)(2-3x)}=\frac{2a-3ax+bx-b}{(x-1)(2-3x)}=\frac{(b-3a)x+2a-b}{(x-1)(2-3x)}[/tex]

    Par identification, on a:

    [tex]\displaystyle \left \{ {{b-3a=-10} \atop {2a-b=8}} \right. \Leftrightarrow \left \{ {{b=-10+3a} \atop {2a+10-3a=8}} \right. \Leftrightarrow \left \{ {{b=-10+3a} \atop {-a+10=8}} \right. \Leftrightarrow \left \{ {{b=-10+3 \times 2} \atop {a=2}} \right.\\ \\ \Leftrightarrow \left \{ {{b=-4} \atop {a=2}} \right.[/tex]

    On a donc que:

    [tex]\displaystyle \frac{8-10x}{(x-1)(2-3x)}=\frac{2}{x-1}-\frac{4}{2-3x}\\[/tex]

    2) Une primitive de la fonction f est:

    [tex]\displaystyle F(x)=2\ln(x-1)-4 \times -\frac{1}{3} \ln(2-3x)=2\ln(x-1)+\frac{4}{3}\ln(2-3x)[/tex]